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Variational Spiked Oscillator 

V. C. Aguilera-Navarro ~ and N. Ullah 2 

Received August 31, 1993 

A variational analysis of the spiked harmonic oscillator Hamiltonian --d2/dr 2 .+ 
r 2 + 2/r 5/2, 2 > 0, is reported. A trial function automatically satisfying both the 
Dirichlet boundary condition at the origin and the boundary condition at infinity 
is introduced. The results are excellent for a very large range of values of the 
coupling parameter 2, suggesting that the present variational function is appro- 
priate for the treatment of the spiked oscillator in all its regimes (strong, 
moderate, and weak interactions). 

1. INTRODUCTION 

The so-called spiked harmonic oscillator, defined by the Hamiltonian 

H = - V  2 21- r 2 + 2 / r  ~ (1) 

has recently been an object of  study (Harrell, 1977; de Llano, 1981; 
Aguilera-Navarro e t  al . ,  1990, 1992; Aguilera-Navarro and Guardiola, 1991; 
Fern/mdez, 1991; Znojil, 1991, 1992; Guardiola and Ro s, 1992; Solano-Tor- 
res e t  aL ,  1992). One aspect of  its intrinsic importance stems from the 
necessity of  adding a spiked term to the generally used harmonic oscillator 
approximation near the minimum of  a given short-range potential. 

Several methods were tried in order to obtain a description of  the ground 
state for different interaction regimes--small,  moderate, and large coupling 
constant A- - a nd  different degrees of  singularities at the origin--character-  
ized by the positive parameter ~. In general, each of  these interaction 
regimes requires a different and specific treatment, usually requiring pertur- 
bation schemes. 

In Section 2, we formulate explicitly the problem and introduce a 
variational function that satisfies the Dirichlet boundary condition at the 
origin and has the appropriate behavior at infinity. 
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In Section 3, we carry out a variational analysis of  the Hamiltonian for 
the special case of ~ = 5/2. It turns out that the variational analysis using 
the bases introduced in this paper leads to extremely good results for all 
values of )~, i.e., for weak, moderate, and strong interactions at once. The 
results obtained in variational spaces of  different dimensions are compared 
with the values obtained by numerically integrating the Schrfdinger equa- 
tion and reported in Aguilera-Navarro et al. (1990). It results that in a 
ten-dimensional variational space the highest "error" is of  the order of  only 
0.16%. Other results and comments are presented in the last section. 

2. FORMULATION OF THE PROBLEM 

The 3D wave equation we have to deal with reads 

[ - V  2 + r 2 + 2/r~]$(r) = E$(r) (2) 

The associated radial wave equation for the ground state reduces to 

dr 2 r dr + r2 + R(r) = ER(r) (3) 

complemented with the usual boundary condition R(r)--, 0 as r--, ~ and 
the Dirichlet condition R(0) = 0. The radial function is normalized accord- 
ing to the condition 

o ~ R 2 ( r ) r  2 dr  = 1 (4) 

Our variational function is defined as a linear combination of the basic 
functions 

Rn(r) = AnraM( - n ,  fl + 3/2, r E) e -'2/2, n = 0, 1, 2 . . . .  (5) 

where M(a, b, z) is a confluent hypergeometric function as defined, for 
instance, in Abramowitz and Stegun (1970). As n is an integer, the 
hypergeometric function reduces to a polynomial. Consequently, every 
function R,(r) satisfies the above boundary conditions. 

In our trial base equation (5), fl is a variational parameter to be 
determined. Besides depending on 2 and ct, fl depends also on the dimen- 
sion of the space where the variational analysis is carried out. As this 
parameter is present in a nonlinear way, we should develop a discrete 
variational analysis on it. Instead, we prefer to follow a different procedure. 
By considering only the first component Ro(r ) as the variational trial 
function, we are able to determine the parameter fl analytically. In other 
words, the variational function 

R(r) = Aor ~ e-'2/2 (6) 
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and the radial equation (3) provide us with the variational ground-state 
energy 

E 3 + F ( / ~ - e / 2 +  3/2) 2 2fl2 = + - -  (7) 
r(f l  + 3/2) 2/~ + 1 

where, for given values of  c~ and 2, the parameter fl is determined from the 
implicit equation 

2/~(/~ + 1) F(fl + 1/2) 1 
= z (8)  

2fl + 1 F(/~ - ~/2 + 3/2) r + 3/2) - ~k(fl - ~/2 + 3/2) 

In equation (8), ~b(z) is the usual psi (or  digamma) function defined by the 
logarithmic derivative of  the gamma function (Abramowitz and Stegun, 
1970) 

~, (z )  = F ' ( z ) / F ( z )  (9) 

In Table I, we display the values of /3  and the ground-state energy 
obtained from equations (8) and (7), respectively, for several values of  the 
coupling parameter 2, and ~ = 5/2. The values of  fl associated with each 2 
value are taken from this table and used in the next section to carry out a 
more extensive variational analysis. 

3. NORMALIZATION AND MATRIX ELEMEN TS  

In this section, we consider the special limiting case of ~ = 5/2 and 
develop a variational analysis of the Hamiltonian (3) with the basic functions 
(5). Varying the dimension of  the variational space, we can see the trend of 
the method. It results that the convergence is extremely fast for all values 
of  the interaction parameter 2 in the ample range of  values considered. 

Table I. Energies Obtained from Equation (7) for ~ = 5/2 ~ 

5[ fl Eeale Ee .... Error (%) 

0.001 0.0426 3.004054 3.004022 0.001 
0.010 0.03674 3.037846 3.036729 0.037 
0.100 0.210460 3.273543 3.266873 0.204 
1.000 0.8325298 4.325682 4.317311 0.194 

10.000 2.7414613 7.740873 7.735111 0.074 
100.0 8.19143095 17.546306 17.541889 0.025 

1000. 23.42159139 44.959424 44.955485 0.009 

~Eexact refers to the energies obtained by numerical integration of the wave equation as 
reported in Aguilera-Navarro et aL (1990). The error is defined by 1001Ecazc- Eexactl/g~ . . . .  �9 
The values of fl were obtained from equation (8) with ~ = 5/2. 
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The normalization condition defined by equation (4) requires that the 
coefficients An of equation (5) be given by 

A] = 2F(n +/~ + 3/2)/n!F2(# + 3/2) (10) 

In order to get the matrix elements of the Hamiltonian (3) in the basis (5), 
we conveniently split that operator into two terms as 

where 

and 

H =  Ho + H, (11) 

d 2 2 d r2 + fl(fl + 1) (12) 
Ho = dr 2 r dr + r z 

fl(fl + 1) 
H1 = r5/2 r2 (13) 

It can be seen easily that Ho is diagonal in the basis R.(r) defined by 
equation (5). Its eigenvalues Eo. are given by 

E0~ = 4n + 2fl + 3 (14) 

On the other hand, the matrix elements of H1 in the basis defined by 
equation (5) are given by 

1 
(nl)nm =~A.A . , [2S .m - f l ( f l  + 1)Gnm], n , m  =0,  1, 2 , . . .  (15) 

with 

and 

s.m _-- s .~  (#) = 
F(n + fl + 3/2) q = o 

r (q  +/~ + 1/4)r(n + 5/4 - q) 
x 

r(q + ~ + 3/2)F(5/4 - q) 
(16) 

n!F(/~ + 3/2)F(/~ + 1/2) 
G.,. = G.m(fl) = (17) 

F(n + fl + 3/2) 

In the numerical calculations, it helps to realize that equation (16) for 
m = 0 reduces to 

5) F(fl + 1/4) 
Sno= ~ n F ( n + f l + 3 / 2 )  (18) 
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where (Z)n is a Pochhammer symbol as defined in Abramowitz and Stegun 
(1970). It is also interesting to note that Gnm does not depend on m, i.e., all 
matrix elements Gnm are equal in a given row. 

It is easy to verify that equations (14) and (15) with r e = n = 0  
reproduce the "zero-quantum energy" given in equation (7) when ~ -- 5/2. 

4. RESULTS AND COMMENTS 

The variational analysis was carried out in a ten-dimensional space. 
The diagonalization of the Hamiltonian was also made in several subspaces 
in order to get an idea of the trend of the method. The results for the values 
of 2 given in Table I are displayed in Table II. It can be noted that the 
convergence of the method is very fast. The diagonalizations were carried 
out with an accuracy of six decimal digits. However, for sake of space, only 
five digits are shown. The entries Ee~act, obtained through numerical 
integration of the wave equation, were taken from Aguilera-Navarro et al. 
(1990). 

A simplification we imposed in our calculations was to take the 
relationship between fl and 2 from equation (8) for ct = 5/2. As explained 
in Section 2, this relationship was determined via a "zero-quantum" 
calculation. In principle, a better analysis would be to determine fl in each 
subspace where the variational analysis is being carried out. However, the 
expected improvements would not justify the extra numerical work in- 
volved, in view of the excellent results already obtained in the very large 
range of values for the coupling Constant 2 and displayed in Table II. The 
variational energies determine upper bounds to the exact ground-state ones 
in accordance with the variational theorem. The remarkable agreement 
with Eexae t for all values of the parameter 2 suggests that the trial function 
used must have a very good overlap to the exact eigenfunction. 

Finally, we must stress that we were able to treat the spiked harmonic 
oscillator in all its regimes, namely under weak, moderate, and strong 
coupling, at once. Other methods require special adaptations to deal with 
each of these regimes separately. 
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