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Variational Spiked Oscillator

V. C. Aguilera-Navarro' and N. Ullah?

Received August 31, 1993

A variational analysis of the spiked harmonic oscillator Hamiltonian —d?/dr? +
r? 4 Afr32, 1 >0, is reported. A trial function automatically satisfying both the
Dirichlet boundary condition at the origin and the boundary condition at infinity
is introduced. The results are excellent for a very large range of values of the
coupling parameter A, suggesting that the present variational function is appro-
priate for the treatment of the spiked oscillator in all its regimes (strong,
moderate, and weak interactions). .

1. INTRODUCTION

The so-called spiked harmonic oscillator, defined by the Hamiltonian
H=—-V*+r>+i/r* e

has recently been an object of study (Harrell, 1977; de Llano, 1981;
Aguilera-Navarro et al., 1990, 1992; Aguilera-Navarro and Guardiola, 1991;
Fernandez, 1991; Znojil, 1991, 1992; Guardiola and Ros, 1992; Solano-Tor-
res et al., 1992). One aspect of its intrinsic importance stems from the
necessity of adding a spiked term to the generally used harmonic oscillator
approximation near the minimum of a given short-range potential.

Several methods were tried in order to obtain a description of the ground
state for different interaction regimes—small, moderate, and large coupling
constant A—and different degrees of singularities at the origin—character-
ized by the positive parameter «. In general, each of these interaction
regimes requires a different and specific treatment, usually requiring pertur-
bation schemes.

In Section 2, we formulate explicitly the problem and introduce a

variational function that satisfies the Dirichlet boundary condition at the
origin and has the appropriate behavior at infinity.
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In Section 3, we carry out a variational analysis of the Hamiltonian for
the special case of o = 5/2. It turns out that the variational analysis using
the bases introduced in this paper leads to extremely good results for all
values of A, i.e., for weak, moderate, and strong interactions at once. The
results obtained in variational spaces of different dimensions are compared
with the values obtained by numerically integrating the Schrédinger equa-
tion and reported in Aguilera-Navarro et al. (1990). It results that in a
ten-dimensional variational space the highest “error” is of the order of only
0.16%. Other results and comments are presented in the last section.

2. FORMULATION OF THE PROBLEM

The 3D wave equation we have to deal with reads

[=V2+r2+ A/rW(r) = Ey(r) e
The associated radial wave equation for the ground state reduces to
a2 2d  , A
[——2;—2—;5+r +;;:|R(r) = ER(r) 3

complemented with the usual boundary condition R(r) -0 as r -» o0 and
the Dirichlet condition R(0) = 0. The radial function is normalized accord-
ing to the condition

ro R¥(r)ridr =1 4

Our variational function is defined as a linear combination of the basic
functions

R,(r) = A, r’M(—n, B +3/2,r)e "2, n=0,1,2,... &)

where M(a, b, z) is a confluent hypergeometric function as defined, for
instance, in Abramowitz and Stegun (1970). As n is an integer, the
hypergeometric function reduces to a polynomial. Consequently, every
function R,(r) satisfies the above boundary conditions.

In our trial base equation (5), f is a variational parameter to be
determined. Besides depending on A and a, § depends also on the dimen-
sion of the space where the variational analysis is carried out. As this
parameter is present in a nonlinear way, we should develop a discrete
variational analysis on it. Instead, we prefer to follow a different procedure.
By considering only the first component Ry(r) as the variational trial
function, we are able to determine the parameter f analytically. In other
words, the variational function

R(r) = Ayrf e—"2 (6
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and the radial equation (3) provide us with the variational ground-state
energy

I'(g —a/2+3/2 2B2
(ﬁr(ﬁq/w/z)/ )A+2ﬂ€-1 M
where, for given values of o and A, the parameter f is determined from the
implicit equation
26B+1) T(B+1/2) 1 _
2B+1 T(B—a/243/2)y(B+3/2) — (B —a/2+3/2)
In equation (8), ¥(z) is the usuval psi (or digamma) function defined by the

logarithmic derivative of the gamma function (Abramowitz and Stegun,
1970)

E=3+4

A (®)

Y(2) =T"(@)/T(2) %

In Table I, we display the values of § and the ground-state energy
obtained from equations (8) and (7), respectively, for several values of the
coupling parameter 4, and a = 5/2. The values of f associated with each A
value are taken from this table and used in the next section to carry out a
more extensive variational analysis.

3. NORMALIZATION AND MATRIX ELEMENTS

In this section, we consider the special limiting case of « = 5/2 and
develop a variational analysis of the Hamiltonian (3) with the basic functions
(5). Varying the dimension of the variational space, we can see the trend of
the method. It results that the convergence is extremely fast for all values
of the interaction parameter A in the ample range of values considered.

Table I. Energies Obtained from Equation (7) for o = 5/2¢

i ﬁ Ecalc Eexacl Error (%)
0.001 0.0426 3.004054 3.004022 0.001
0.010 0.03674 3.037846 3.036729 0.037
0.100 0.210460 3.273543 3.266873 0.204
1.000 0.8325298 4.325682 4.317311 0.194
10.000 2.7414613 7.740873 7.735111 0.074
100.0 8.19143095 17.546306 17.541889 0.025
1000. 23.42159139 44.959424 44.955485 0.009

°E_ . tefers to the energies obtained by numerical integration of the wave equation as
reported in Aguilera-Navarro et al. (1990). The error is defined by 100)E ;. — Fecace/Eexact-
The values of B were obtained from equation (8) with & = 5/2.
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The normalization condition defined by equation (4) requires that the
coefficients 4, of equation (5) be given by

A2 =2T(n+ B + 3/2)/n'T*(B + 3/2) (10)

In order to get the matrix elements of the Hamiltonian (3) in the basis (5),
we conveniently split that operator into two terms as

H=H,+ H, (11)
where
d> 2d B +1)
HO——EE—;;Z,;-{-I‘Z-FB—*;Z——* (12)
and
A BB+
H,=r—5/5— p (13)

It can be seen easily that H, is diagonal in the basis R,(r) defined by
equation (5). Its eigenvalues E,, are given by

E, =4n +2B +3 (14)

On the other hand, the matrix elements of H, in the basis defined by
equation (5) are given by

(H1)m =%AnAm[XSnm — BB + DG, nnm=0,1,2,... (15
with
e o T3 m o (m
Snm = nm(ﬁ) = r(n +ﬂ n 3/2) q;o(__l) (q)
T(g + B + 14HT(n + 5/4 — g) 16
T(q + B +3/2DT(5/4—q)
and
G,, =G, (B = n'T(B + 3/2T(B +1/2) -

F(n+ B +3/2)
In the numerical calculations, it helps to realize that equation (16) for
m = 0 reduces to

Sno =

<5> T(B + 1/4) as)

4) T(n+p+3/2)
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where (z), is a Pochhammer symbol as defined in Abramowitz and Stegun
(1970). 1t is also interesting to note that G,,, does not depend on m, i.e., all
matrix elements G,,, are equal in a given row.

It is easy to verify that equations (14) and (15) with m=n=0
reproduce the “zero-quantum energy’ given in equation (7) when a = 5/2.

4. RESULTS AND COMMENTS

The variational analysis was carried out in a ten-dimensional space.
The diagonalization of the Hamiltonian was also made in several subspaces
in order to get an idea of the trend of the method. The results for the values
of A given in Table I are displayed in Table II. It can be noted that the
convergence of the method is very fast. The diagonalizations were carried
out with an accuracy of six decimal digits. However, for sake of space, only
five digits are shown. The entries E.,, obtained through numerical
integration of the wave equation, were taken from Aguilera-Navarro et al.
(1990).

A simplification we imposed in our calculations was to take the
relationship between p and A from equation (8) for a = 5/2. As explained
in Section 2, this relationship was determined via a ‘‘zero-quantum”
calculation. In principle, a better analysis would be to determine f§ in each
subspace where the variational analysis is being carried out. However, the
expected improvements would not justify the extra numerical work in-
volved, in view of the excellent results already obtained in the very large
range of values for the coupling constant A and displayed in Table II. The
variational energies determine upper bounds to the exact ground-state ones
in accordance with the variational theorem. The remarkable agreement
with E,,,. for all values of the parameter 1 suggests that the trial function
used must have a very good overlap to the exact eigenfunction.

Finally, we must stress that we were able to treat the spiked harmonic
oscillator in all its regimes, namely under weak, moderate, and strong
coupling, at once. Other methods require special adaptations to deal with
each of these regimes separately.
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